Oxytocin improves probabilistic reversal learning but not effortful motivation in Brown Norway rats

催产素可改善挪威棕色大鼠的概率逆向学习,但不能改善其努力学习动机

阅读:5
作者:Benjamin Z Roberts, Jared W Young, Yinong V He, Zackary A Cope, Paul D Shilling, David Feifel

Abstract

Deficits in cognition and motivation are common and debilitating aspects of psychiatric disorders, yet still go largely untreated. The neuropeptide oxytocin (OT) is a potential novel therapeutic for deficits in social cognition and motivation in psychiatric patients. However, the effects of OT on clinically relevant domains of non-social cognition and motivation remain under studied. The present study investigated the effects of acute and chronic (21-day) administration of subcutaneous OT (0.04, 0.2, and 1 mg/kg) in cross-species translatable operant paradigms of reward learning and effortful motivation in male and female Brown Norway (BN) rats (n = 8-10/group). Reward learning was assessed using the probabilistic reversal learning task (PRLT) and effortful motivation was measured using the progressive ratio breakpoint task (PRBT). As predicted, BN rats exhibited baseline deficits in the detection of reversals of reward contingency in the PRLT relative to Long Evans (LE) rats. The two strains performed equally in the PRBT. Thirty minutes after a single OT injection (1 mg/kg), measures of both initial probabilistic learning (trials to first criterion) and subsequent reversal learning (contingency switches) were significantly improved to levels comparable with LE rats. The OT effect on switches persisted in male, but not female, BN rats 30 min, 24 h, and 6 days after long-term OT administration, suggesting the induction of neuroplastic changes. OT did not affect effortful motivation at any time-point. The beneficial effects of OT on reward learning in the absence of increased effortful motivation support the development of OT as a novel therapeutic to improve cognitive functioning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。