Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry

通过逆行追踪和多层免疫组织化学对人类结肠内脏离神经元进行表征

阅读:4
作者:Bao Nan Chen, Adam G Humenick, Timothy James Hibberd, Wai Ping Yew, David A Wattchow, Phil G Dinning, Marcello Costa, Nick J Spencer, Simon J H Brookes

Aims

Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry.

Background and aims

Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry.

Conclusion

Viscerofugal neurons are present in human colon and show very diverse combinations of features. High proportions express ChAT, consistent with cholinergic synaptic outputs onto postganglionic sympathetic neurons in prevertebral ganglia.

Methods

Colonic nerves were identified in isolated preparations of human colon and set up for axonal tracing with biotinamide. After fixation, labeled VFN cell bodies were subjected to multiplexed immunohistochemistry for 12 established nerve cell body markers.

Results

Biotinamide tracing filled 903 viscerofugal nerve cell bodies (n = 23), most of which (85%) had axons projecting orally before entering colonic nerves. Morphologically, 97% of VFNs were uni-axonal. Of 215 VFNs studied in detail, 89% expressed ChAT, 13% NOS, 13% calbindin, 9% enkephalin, 7% substance P and 0 of 123 VFNs expressed CART. Few VFNs contained calretinin, VIP, 5HT, CGRP, or NPY. VFNs were often surrounded by dense baskets of axonal varicosities, probably reflecting patterns of connectivity; VAChT+ (cholinergic), SP+ and ENK+ varicosities were most abundant around them. Human VFNs were diverse; showing 27 combinations of immunohistochemical markers, 4 morphological types and a wide range of cell body sizes. However, 69% showed chemical coding, axonal projections, soma-dendritic morphology and connectivity similar to enteric excitatory motor neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。