Different residues in the GABAA receptor benzodiazepine binding pocket mediate benzodiazepine efficacy and binding

GABAA 受体苯二氮卓结合口袋中的不同残基介导苯二氮卓的功效和结合

阅读:5
作者:Elaine V Morlock, Cynthia Czajkowski

Abstract

Benzodiazepines (BZDs) exert their therapeutic actions by binding to the GABA(A) receptor (GABA(A)R) and allosterically modulating GABA-induced chloride currents (I(GABA)). A variety of ligands with divergent structures bind to the BZD site, and the structural mechanisms that couple their binding to potentiation of I(GABA) are not well understood. In this study, we measured the effects of individually mutating 22 residues throughout the BZD binding pocket on the abilities of eszopiclone, zolpidem, and flurazepam to potentiate I(GABA). Wild-type and mutant α(1)β(2)γ(2) GABA(A)Rs were expressed in Xenopus laevis oocytes and analyzed using a two-electrode voltage clamp. GABA EC(50), BZD EC(50), and BZD maximal potentiation were measured. These data, combined with previous radioligand binding data describing the mutations' effects on BZD apparent binding affinities (J Neurosci 28:3490-3499, 2008; J Med Chem 51:7243-7252, 2008), were used to distinguish residues within the BZD pocket that contribute to BZD efficacy and BZD binding. We identified six residues whose mutation altered BZD maximal potentiation of I(GABA) (BZD efficacy) without altering BZD binding apparent affinity, three residues whose mutation altered binding but had no effect on BZD efficacy, and four residues whose mutation affected both binding and efficacy. Moreover, depending on the BZD ligand, the effects of some mutations were different, indicating that the structural mechanisms underlying the ability of BZD ligands with divergent structures to potentiate I(GABA) are distinct.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。