MECP2-related pathways are dysregulated in a cortical organoid model of myotonic dystrophy

MECP2 相关通路在肌强直性营养不良的皮质类器官模型中失调

阅读:4
作者:Kathryn H Morelli, Wenhao Jin, Shashank Shathe, Assael A Madrigal, Krysten L Jones, Joshua L Schwartz, Tristan Bridges, Jasmine R Mueller, Archana Shankar, Isaac A Chaim, John W Day, Gene W Yeo

Abstract

Myotonic dystrophy type 1 (DM1) is a multisystem, autosomal-dominant inherited disorder caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene. Despite its prominence as the most common adult-onset muscular dystrophy, patients with congenital to juvenile-onset forms of DM1 can present with debilitating neurocognitive symptoms along the autism spectrum, characteristic of possible in utero cortical defects. However, the molecular mechanism by which CTG MREs lead to these developmental central nervous system (CNS) manifestations is unknown. Here, we showed that CUG foci found early in the maturation of three-dimensional (3D) cortical organoids from DM1 patient-derived induced pluripotent stem cells (iPSCs) cause hyperphosphorylation of CUGBP Elav-like family member 2 (CELF2) protein. Integrative single-cell RNA sequencing and enhanced cross-linking and immunoprecipitation (eCLIP) analysis revealed that reduced CELF2 protein-RNA substrate interactions results in misregulation of genes critical for excitatory synaptic signaling in glutamatergic neurons, including key components of the methyl-CpG binding protein 2 (MECP2) pathway. Comparisons to MECP2(y/-) cortical organoids revealed convergent molecular and cellular defects such as glutamate toxicity and neuronal loss. Our findings provide evidence suggesting that early-onset DM1 might involve neurodevelopmental disorder-associated pathways and identify N-methyl-d-aspartic acid (NMDA) antagonists as potential treatment avenues for neuronal defects in DM1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。