Single-cell Raman microscopy with machine learning highlights distinct biochemical features of neutrophil extracellular traps and necrosis

带有机器学习的单细胞拉曼显微镜突出了中性粒细胞胞外陷阱和坏死的独特生化特征

阅读:8
作者:Patrick Michael Lelliott, Alison Jane Hobro, Nicolas Pavillon, Masayuki Nishide, Yasutaka Okita, Yumiko Mizuno, Sho Obata, Shinichiro Nameki, Hanako Yoshimura, Atsushi Kumanogoh, Nicholas Isaac Smith

Abstract

The defining biology that distinguishes neutrophil extracellular traps (NETs) from other forms of cell death is unresolved, and techniques which unambiguously identify NETs remain elusive. Raman scattering measurement provides a holistic overview of cell molecular composition based on characteristic bond vibrations in components such as lipids and proteins. We collected Raman spectra from NETs and freeze/thaw necrotic cells using a custom built high-throughput platform which is able to rapidly measure spectra from single cells. Principal component analysis of Raman spectra from NETs clearly distinguished them from necrotic cells despite their similar morphology, demonstrating their fundamental molecular differences. In contrast, classical techniques used for NET analysis, immunofluorescence microscopy, extracellular DNA, and ELISA, could not differentiate these cells. Additionally, machine learning analysis of Raman spectra indicated subtle differences in lipopolysaccharide (LPS)-induced as opposed to phorbol myristate acetate (PMA)-induced NETs, demonstrating the molecular composition of NETs varies depending on the stimulant used. This study demonstrates the benefits of Raman microscopy in discriminating NETs from other types of cell death and by their pathway of induction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。