Regulation of mitochondrial autophagy by lncRNA MALAT1 in sepsis-induced myocardial injury

长链非编码RNA MALAT1在脓毒症心肌损伤中对线粒体自噬的调控

阅读:9
作者:Guangqing Huang, Xu Zhao, Yong Bai, Jie Liu, Wei Li, Yongquan Wu

Background

Sepsis-induced myocardial injury (SIMI) is a severe complication of sepsis, contributing significantly to mortality. Mitochondrial dysfunction and dysregulated autophagy are implicated in SIMI pathogenesis. Long non-coding RNA MALAT1 has been associated with various diseases, including sepsis, but its role in SIMI remains unclear.

Conclusion

Our findings suggest that lncRNA MALAT1 plays a crucial role in SIMI by modulating miR-146a-mediated mitochondrial autophagy and the TLR4/NF-kB/MAPK signaling pathway. These results provide new insights into the pathogenesis of SIMI and potential therapeutic targets.

Methods

A sepsis-induced cardiomyopathy model was established in mice, and the cardiac tissues were analyzed. The expression of lncRNA MALAT1 was modulated and its effects on mitochondrial autophagy, myocardial injury, inflammation, and apoptosis were assessed. Furthermore, the interaction between MALAT1 and miR-146a was explored, as well as the involvement of the TLR4/NF-kB/MAPK signaling pathway.

Objective

This study aimed to investigate the role of lncRNA MALAT1 in SIMI, specifically in the regulation of mitochondrial autophagy.

Results

Activation of mitochondrial autophagy by urolithin A (UA) alleviated SIMI, inflammation, and cardiac dysfunction. Downregulation of MALAT1 enhanced mitochondrial autophagy, stabilized the mitochondrial membrane potential, and inhibited mitochondrial reactive oxygen species (ROS) production, leading to improved cell viability and reduced myocardial injury. Furthermore, MALAT1 interacted with miR-146a, and their modulation influenced mitochondrial autophagy, myocardial injury, and inflammation. The TLR4/NF-kB/MAPK signaling pathway was implicated in these processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。