Effects of α7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models

α7 正向变构调节剂对小鼠炎症和慢性神经性疼痛模型的影响

阅读:5
作者:Kelen Freitas, Sudeshna Ghosh, F Ivy Carroll, Aron H Lichtman, M Imad Damaj

Abstract

Agonists and positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as novel therapeutic approaches for managing cognitive deficits in schizophrenia and Alzheimer's disease. Though α7 agonists were recently found to possess antinociceptive and anti-inflammatory properties in rodent models of chronic neuropathic pain and inflammation, the effects of α7 nAChRs PAMs on chronic pain and inflammation remain largely unknown. The present study investigated whether PAMs, by increasing endogenous cholinergic tone, potentiate α7 nAChRs function to attenuate inflammatory and chronic neuropathic pain in mice. We tested two types of PAMS, type I (NS1738) and type II (PNU-120596) in carrageenan-induced inflammatory pain and chronic constriction injury (CCI) neuropathic pain models. We found that both NS1738 and PNU-120596 significantly reduced thermal hyperalgesia, while only PNU-120596 significantly reduced edema caused by a hind paw infusion of carrageenan. Importantly, PNU-120596 reversed established thermal hyperalgesia and edema induced by carrageenan. In the CCI model, PNU-120596 had long-lasting (up to 6 h), dose-dependent anti-hyperalgesic and anti-allodynic effects after a single injection, while NS1738 was inactive. Systemic administration of the α7 nAChR antagonist MLA reversed PNU-120596's effects, suggesting the involvement of central and peripheral α7 nAChRs. Furthermore, PNU-120596 enhanced an ineffective dose of selective agonist PHA-543613 to produce anti-allodynic effects in the CCI model. Our results indicate that the type II α7 nAChRs PAM PNU-120596, but not the type I α7 nAChRs PAM NS1738, shows significant anti-edematous and anti-allodynic effects in inflammatory and CCI pain models in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。