Lake Drainage in Permafrost Regions Produces Variable Plant Communities of High Biomass and Productivity

永久冻土带湖泊排水形成高生物量和高生产力的可变植物群落

阅读:6
作者:Sergey Loiko, Nina Klimova, Darya Kuzmina, Oleg Pokrovsky

Abstract

Climate warming, increased precipitation, and permafrost thaw in the Arctic are accompanied by an increase in the frequency of full or partial drainage of thermokarst lakes. After lake drainage, highly productive plant communities on nutrient-rich sediments may develop, thus increasing the influencing greening trends of Arctic tundra. However, the magnitude and extent of this process remain poorly understood. Here we characterized plant succession and productivity along a chronosequence of eight drained thermokarst lakes (khasyreys), located in the low-Arctic tundra of the Western Siberian Lowland (WSL), the largest permafrost peatland in the world. Based on a combination of satellite imagery, archive mapping, and radiocarbon dating, we distinguished early (<50 years), mid (50-200 years), and late (200-2000 years) ecosystem stages depending on the age of drainage. In 48 sites within the different aged khasyreys, we measured plant phytomass and productivity, satellite-derived NDVImax, species composition, soil chemistry including nutrients, and plant elementary composition. The annual aboveground net primary productivity of the early and mid khasyrey ranged from 1134 and 660 g·m-2·y-1, which is two to nine times higher than that of the surrounding tundra. Late stages exhibited three to five times lower plant productivity and these ecosystems were distinctly different from early and mid-stages in terms of peat thickness and pools of soil nitrogen and potassium. We conclude that the main driving factor of the vegetation succession in the khasyreys is the accumulation of peat and the permafrost aggradation. The soil nutrient depletion occurs simultaneously with a decrease in the thickness of the active layer and an increase in the thickness of the peat. The early and mid khasyreys may provide a substantial contribution to the observed greening of the WSL low-Arctic tundra.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。