N-Benzoyl dithieno[3,2-b:2',3'-d]pyrrole-based hyperbranched polymers by direct arylation polymerization

通过直接芳基化聚合制备 N-苯甲酰二噻吩并[3,2-b:2',3'-d]吡咯基超支化聚合物

阅读:7
作者:Tam Huu Nguyen, Thu Anh Nguyen, Hoan Minh Tran, Le-Thu T Nguyen, Anh Tuan Luu, Jun Young Lee, Ha Tran Nguyen

Background

Although poly(N-acyl dithieno[3,2-b:2',3'-d]pyrrole)s have attracted great attention as a new class of conducting polymers with highly stabilized energy levels, hyperbranched polymers based on this monomer type have not yet been studied. Thus, this work aims at the synthesis of novel hyperbranched polymers containing N-benzoyl dithieno[3,23,2-b:2',3'-d]pyrrole acceptor unit and 3-hexylthiophene donor moiety via the direct arylation polymerization method. Their structures, molecular weights and thermal properties were characterized via 1H NMR and FTIR spectroscopies, GPC, TGA, DSC and XRD measurements, and the optical properties were investigated by UV-vis and fluorescence spectroscopies.

Conclusion

Both hyperbranched polymers with triphenylamine/triphenylbenzene as branching moieties exhibited high structural order in thin films, which can be promising for organic solar cell applications. The UV-vis absorption of the hyperbranched polymer containing triphenylbenzene as branching unit was red-shifted as compared with the triphenylamine-containing polymer, as a result of a higher chain packing degree.

Results

Hyperbranched conjugated polymers containing N-benzoyl dithieno[3,23,2-b:2',3'-d]pyrrole acceptor unit and 3-hexylthiophene donor moiety, linked with either triphenylamine or triphenylbenzene as branching unit, were obtained via direct arylation polymerization of the N-benzoyl dithieno[3,23,2-b:2',3'-d]pyrrole, 2,5-dibromo 3-hexylthiophene and tris(4-bromophenyl)amine (or 1,3,5-tris(4-bromophenyl)benzene) monomers. Organic solvent-soluble polymers with number-average molecular weights of around 18,000 g mol-1 were obtained in 80-92% yields. The DSC and XRD results suggested that the branching structure hindered the stacking of polymer chains, leading to crystalline domains with less ordered packing in comparison with the linear analogous polymers. The results revealed that the hyperbranched polymer with triphenylbenzene as the branching unit exhibited a strong red-shift of the maximum absorption wavelength, attributed to a higher polymer stacking order as a result of the planar structure of triphenylbenzene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。