Origin of nitrite and nitrate in nasal and exhaled breath condensate and relation to nitric oxide formation

鼻腔和呼出气冷凝液中亚硝酸盐和硝酸盐的来源及其与一氧化氮形成的关系

阅读:6
作者:H Marteus, D C Törnberg, E Weitzberg, U Schedin, K Alving

Background

Raised concentrations of nitrate and nitrite have been found in exhaled breath condensate (EBC) in airway disease, and it has been postulated that this reflects increased nitric oxide (NO) metabolism. However, the chemical and anatomical origin of nitrate and nitrite in the airways has not yet been sufficiently studied.

Conclusions

Besides the salivary glands, plasma nitrate is taken up by the lower airways but not the nasal airways. Nitrate levels in EBC are thus influenced by dietary intake. Nitrate is reduced to nitrite by bacterial activity which takes place primarily in the oropharyngeal tract of healthy subjects. Only oropharyngeal nitrite seems to contribute to exhaled NO in non-inflamed airways, and there is also a substantial contribution of nitrite from the oropharyngeal tract during standard collection of EBC.

Methods

The fraction of exhaled NO at an exhalation flow rate of 50 ml/s (FE(NO)) and nitrite and nitrate in EBC, nasal condensate, and saliva were measured in 17 tracheostomised and 15 non-tracheostomised subjects, all of whom were non-smokers without respiratory disease. Tracheal and oral samples were taken from the tracheostomised subjects and nasal (during velum closure) and oral samples from the non-tracheostomised subjects. Measurements were performed before and after sodium nitrate ingestion (10 mg/kg) and use of antibacterial mouthwash (chlorhexidine 0.2%).

Results

In tracheostomised subjects oral FE(NO) increased by 90% (p<0.01) while tracheal FE(NO) was not affected 60 minutes after nitrate ingestion. Oral EBC nitrite levels were increased 23-fold at 60 minutes (p<0.001) whereas the nitrite levels in tracheal EBC showed only a minor increase (fourfold, p<0.05). Nitrate was increased the same amount in oral and tracheal EBC at 60 minutes (2.5-fold, p<0.05). In non-tracheostomised subjects oral FE(NO) and EBC nitrite increased after nitrate ingestion and after chlorhexidine mouthwash they approached baseline levels again (p<0.001). Nasal NO, nitrate, and nitrite were not affected by nitrate intake or mouthwash. At baseline, mouthwash with deionised water did not affect nitrite in oral EBC or saliva, whereas significant reductions were seen after antibacterial mouthwash (p<0.05 and p<0.001, respectively). Conclusions: Besides the salivary glands, plasma nitrate is taken up by the lower airways but not the nasal airways. Nitrate levels in EBC are thus influenced by dietary intake. Nitrate is reduced to nitrite by bacterial activity which takes place primarily in the oropharyngeal tract of healthy subjects. Only oropharyngeal nitrite seems to contribute to exhaled NO in non-inflamed airways, and there is also a substantial contribution of nitrite from the oropharyngeal tract during standard collection of EBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。