Electroacupuncture ameliorates depression-like behaviors in rats with post-stroke depression by inhibiting ferroptosis in the prefrontal cortex

电针通过抑制前额叶皮质铁死亡改善中风后抑郁症大鼠的抑郁样行为

阅读:8
作者:Jing Gao #, Xiaolei Song #, Yixuan Feng #, Lihua Wu #, Zhimin Ding, Shikui Qi, Mingyue Yu, Ruonan Wu, Xinyue Zheng, Yanyan Qin, Yuchuang Tang, Mengyu Wang, Xiaodong Feng, Qiongshuai Zhang

Discussion

EA improved depression-like behaviors, mitigated mitochondrial damage, and inhibited ferroptosis in prefrontal cortex neurons. Notably, the administration of erastin further enhanced these effects. In conclusion, EA appears to improve PSD by inhibiting ferroptosis in the prefrontal cortex.

Methods

Male Sprague-Dawley rats were subjected to middle carotid artery occlusion and chronic unpredictable mild stress to model PSD. To explore the role of ferroptosis in the effects of EA, the ferroptosis inducer erastin was administered into the rats' lateral ventricles, followed by 14 days of EA treatment, with sessions lasting 30 minutes per day. The Zea-Longa score was used to assess neurological deficits, while the sucrose preference test, elevated plus maze test, and open-field test were employed to evaluate depression-like behaviors in the rats. Hematoxylin-eosin, Nissl, and Perl's staining were used to observe the morphological changes and iron deposition in the prefrontal neurons. Transmission electron microscopy provided detailed observations of mitochondrial morphological changes in neurons. We utilized activity assay kits, enzyme-linked immunosorbent assay (ELISA), and Western blotting to explore potential molecular mechanisms underlying the effects of EA.

Results

EA can reduce neurological deficits and enhance the spontaneous activity and exploration behavior of rats. In addition, EA could inhibit prefrontal cortex neuronal ferroptosis by reducing iron deposition, decreasing lipid peroxidation, and enhancing antioxidation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。