Designing the ultrasonic treatment of nanoparticle-dispersions via machine learning

通过机器学习设计纳米颗粒分散体的超声波处理

阅读:10
作者:Christina Glaubitz, Barbara Rothen-Rutishauser, Marco Lattuada, Sandor Balog, Alke Petri-Fink

Abstract

Ultrasonication is a widely used and standardized method to redisperse nanopowders in liquids and to homogenize nanoparticle dispersions. One goal of sonication is to disrupt agglomerates without changing the intrinsic physicochemical properties of the primary particles. The outcome of sonication, however, is most of the time uncertain, and quantitative models have been beyond reach. The magnitude of this problem is considerable owing to fact that the efficiency of sonication is not only dependent on the parameters of the actual device, but also on the physicochemical properties such as of the particle dispersion itself. As a consequence, sonication suffers from poor reproducibility. To tackle this problem, we propose to involve machine learning. By focusing on four nanoparticle types in aqueous dispersions, we combine supervised machine learning and dynamic light scattering to analyze the aggregate size after sonication, and demonstrate the potential to improve considerably the design and reproducibility of sonication experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。