Exploring the Anticancer Potential of MonoHER (7-Mono-O-(β-Hydroxyethyl)-Rutoside): Mitochondrial-Dependent Apoptosis in HepG2 Cells

探索 MonoHER(7-单-O-(β-羟乙基)-芸香苷)的抗癌潜力:HepG2 细胞中的线粒体依赖性细胞凋亡

阅读:13
作者:Chujie Li, Yue Wang, Jian Liang, Guido R M M Haenen, Yonger Chen, Zhengwen Li, Ming Zhang, Ludwig J Dubois

Aim

Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells. Materials and

Conclusion

MonoHER can inhibit cell growth and induce apoptosis especially in HepG2 human liver cancer cells by triggering the mitochondrial signal transduction pathway, leading to the release of cytochrome C in the cytoplasm and the subsequent activation of caspase-9 and caspase-3. Future research should further explore MonoHER's mechanism of action, efficacy, and potential for clinical translation.

Methods

HepG2 liver, MCF7 breast, and H1299 lung cancer cells were grown under ambient conditions with or without MonoHER exposure. CCK8 assay was used to assess cell viability. Apoptosis, JC-1, and mitochondrial mass were determined using flow cytometry and confocal analysis. The effects of monoHER on apoptosis proteins were detected by confocal microscopy analysis and Western blot.

Results

It was found that MonoHER can reduce HepG2 cells' and MCF7 cells' viability, but not H1299 cells', and induced apoptosis only in HepG2 cells. MonoHER has the potential to enhance the expression of caspase-9 and caspase-3, to damage mitochondria, and to provoke the release of cytochrome C from the mitochondria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。