High-ammonia microenvironment promotes stemness and metastatic potential in hepatocellular carcinoma through metabolic reprogramming

高氨微环境通过代谢重编程促进肝细胞癌的干性和转移潜能

阅读:5
作者:Renchao Zou #, Sicong Jiang #, Jiaqi Mei, Chen Chen, Jia Yu, Yanqiu Fu, Siyu Chen

Background

Hepatocellular carcinoma (HCC) is a prevalent and aggressive form of liver cancer, characterized by frequent recurrence and metastasis, which remain significant obstacles to effective treatment. Ammonia accumulates in the tumor microenvironment of HCC due to dysfunction in the urea cycle, but the detailed impact of ammonia on HCC cells remains insufficiently understood.

Conclusion

Ammonia exerts a dual effect on HCC progression: it initially suppresses cell growth but later promotes stemness, proliferation, and metastasis through metabolic reprogramming. Targeting ammonia metabolism or glycolysis in the tumor microenvironment may represent a promising therapeutic strategy for mitigating HCC recurrence and metastasis. Future studies utilizing clinical samples are required to validate these findings and identify potential therapeutic strategies targeting ammonia metabolism.

Methods

We exposed HCC cell lines to high concentrations of ammonium chloride to evaluate alterations in proliferation, stemness, and migratory potential. After ammonia removal, changes in cellular behavior were assessed using colony formation, and spheroid assays. Transcriptomic and metabolomic analyses were conducted to investigate ammonia-induced metabolic reprogramming and alterations in gene expression. Additionally, animal models were employed to validate the impact of ammonia on tumor growth and metastasis.

Results

Exposure to high-ammonia conditions transiently suppressed HCC cell proliferation without inducing apoptosis. However, following ammonia removal, cells demonstrated increased proliferation, enhanced spheroid formation, and elevated migratory capacity. Transcriptomic analysis revealed the upregulation of genes associated with cell adhesion, migration, and glycolysis. Concurrently, metabolomic profiling indicated increased lactate production, facilitating the aggressive behavior of HCC cells after ammonia withdrawal. Animal experiments confirmed that high-ammonia exposure accelerated tumor growth and metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。