A modified EPA Method 1623 that uses tangential flow hollow-fiber ultrafiltration and heat dissociation steps to detect waterborne Cryptosporidium and Giardia spp

经过修改的 EPA 方法 1623,使用切向流中空纤维超滤和热解离步骤来检测水传播的隐孢子虫和贾第鞭毛虫属

阅读:5
作者:Eric R Rhodes, Leah Fohl Villegas, Nancy J Shaw, Carrie Miller, Eric N Villegas

Abstract

Cryptosporidium and Giardia species are two of the most prevalent protozoa that cause waterborne diarrheal disease outbreaks worldwide. To better characterize the prevalence of these pathogens, EPA Method 1623 was developed and used to monitor levels of these organisms in US drinking water supplies (12). The method has three main parts; the first is the sample concentration in which at least 10 L of raw surface water is filtered. The organisms and trapped debris are then eluted from the filter and centrifuged to further concentrate the sample. The second part of the method uses an immunomagnetic separation procedure where the concentrated water sample is applied to immunomagnetic beads that specifically bind to the Cryptosporidium oocysts and Giardia cysts allowing for specific removal of the parasites from the concentrated debris. These (oo)cysts are then detached from the magnetic beads by an acid dissociation procedure. The final part of the method is the immunofluorescence staining and enumeration where (oo)cysts are applied to a slide, stained, and enumerated by microscopy. Method 1623 has four listed sample concentration systems to capture Cryptosporidium oocysts and Giardia cysts in water: Envirochek filters (Pall Corporation, Ann Arbor, MI), Envirochek HV filters (Pall Corporation), Filta-Max filters (IDEXX, Westbrook, MA), or Continuous Flow Centrifugation (Haemonetics, Braintree, MA). However, Cryptosporidium and Giardia (oo)cyst recoveries have varied greatly depending on the source water matrix and filters used(1,14). A new tangential flow hollow-fiber ultrafiltration (HFUF) system has recently been shown to be more efficient and more robust at recovering Cryptosporidium oocysts and Giardia cysts from various water matrices; moreover, it is less expensive than other capsule filter options and can concentrate multiple pathogens simultaneously(1-3,5-8,10,11). In addition, previous studies by Hill and colleagues demonstrated that the HFUF significantly improved Cryptosporidium oocysts recoveries when directly compared with the Envirochek HV filters(4). Additional modifications to the current methods have also been reported to improve method performance. Replacing the acid dissociation procedure with heat dissociation was shown to be more effective at separating Cryptosporidium from the magnetic beads in some matrices(9,13) . This protocol describes a modified Method 1623 that uses the new HFUF filtration system with the heat dissociation step. The use of HFUF with this modified Method is a less expensive alternative to current EPA Method 1623 filtration options and provides more flexibility by allowing the concentration of multiple organisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。