Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy

维生素 D 受体激活通过抑制细胞凋亡和调节自噬来防止心肌再灌注损伤

阅读:7
作者:Tianbao Yao, Xiaoying Ying, Yichao Zhao, Ancai Yuan, Qing He, Huan Tong, Song Ding, Junling Liu, Xu Peng, Erhe Gao, Jun Pu, Ben He

Aims

To determine the roles of vitamin D receptor (VDR) in ischemia/reperfusion-induced myocardial injury and to investigate the underlying mechanisms involved.

Conclusion

Our data demonstrate that VDR is a novel endogenous self-defensive and cardioprotective receptor against MI/R injury, via mechanisms (at least in part) reducing oxidative stress, and inhibiting apoptosis and autophagy dysfunction-mediated cell death.

Results

The endogenous VDR expression was detected in the mouse heart, and myocardial ischemia/reperfusion (MI/R) upregulated VDR expression. Activation of VDR by natural and synthetic agonists reduced myocardial infarct size and improved cardiac function. Mechanistically, VDR activation inhibited endoplasmic reticulum (ER) stress (determined by the reduction of CCAAT/enhancer-binding protein homologous protein expression and caspase-12 activation), attenuated mitochondrial impairment (determined by the decrease of mitochondrial cytochrome c release and caspase-9 activation), and reduced cardiomyocyte apoptosis. Furthermore, VDR activation significantly inhibited MI/R-induced autophagy dysfunction (determined by the inhibition of Beclin 1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, p62 protein abundance, and the restoration of autophagy flux). Moreover, VDR activation inhibited MI/R-induced oxidative stress through a metallothionein-dependent mechanism. The cardioprotective effects of VDR agonists mentioned earlier were impaired in the setting of cardiac-specific VDR silencing. In contrast, adenovirus-mediated cardiac VDR overexpression decreased myocardial infarct size and improved cardiac function through attenuating oxidative stress, and inhibiting apoptosis and autophagy dysfunction. Innovation and

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。