Biochemical and biophysical characterization of the main protease, 3-chymotrypsin-like protease (3CLpro) from the novel coronavirus SARS-CoV 2

新型冠状病毒 SARS-CoV 2 中主要蛋白酶 3-胰凝乳蛋白酶样蛋白酶 (3CLpro) 的生化和生物物理表征

阅读:7
作者:Juliana C Ferreira, Wael M Rabeh

Abstract

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is responsible for the novel coronavirus disease 2019 (COVID-19). An appealing antiviral drug target is the coronavirus 3C-like protease (3CLpro) that is responsible for the processing of the viral polyproteins and liberation of functional proteins essential for the maturation and infectivity of the virus. In this study, multiple thermal analytical techniques have been implemented to acquire the thermodynamic parameters of 3CLpro at different buffer conditions. 3CLpro exhibited relatively high thermodynamic stabilities over a wide pH range; however, the protease was found to be less stable in the presence of salts. Divalent metal cations reduced the thermodynamic stability of 3CLpro more than monovalent cations; however, altering the ionic strength of the buffer solution did not alter the stability of 3CLpro. Furthermore, the most stable thermal kinetic stability of 3CLpro was recorded at pH 7.5, with the highest enthalpy of activation calculated from the slope of Eyring plot. The biochemical and biophysical properties of 3CLpro explored here may improve the solubility and stability of 3CLpro for optimum conditions for the setup of an enzymatic assay for the screening of inhibitors to be used as lead candidates in the discovery of drugs and design of antiviral therapeutics against COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。