Characterization of Tannic Acid-Coated AZ31 Mg Alloy for Biomedical Application and Comparison with AZ91

单宁酸涂层 AZ31 镁合金的生物医学应用表征及与 AZ91 的比较

阅读:6
作者:Jacopo Barberi, Muhammad Saqib, Anna Dmitruk, Jörg Opitz, Krzysztof Naplocha, Natalia Beshchasna, Silvia Spriano, Sara Ferraris

Abstract

Magnesium alloys are promising materials for bioresorbable implants that will improve patient life and reduce healthcare costs. However, their clinical use is prevented by the rapid degradation and corrosion of magnesium, which leads to a fast loss of mechanical strength and the formation of by-products that can trigger tissue inflammation. Here, a tannic acid coating is proposed to control the degradation of AZ31 and AZ91 alloys, starting from a previous study by the authors on AZ91. The coatings on the two materials were characterized both by the chemical (EDS, FTIR, XPS) and the morphological (SEM, confocal profilometry) point of view. Static degradation tests in PBS and electrochemical measurements in different solutions showed that the protective performances of the tannic acid coatings are strongly affected by the presence of cracks. The presence of fractures in the protective layer generates galvanic couples between the coating scales and the metal, worsening the corrosion resistance. Although degradation control was not achieved, useful insights on the degradation mechanisms of coated Mg surfaces were obtained, as well as key points for future studies: it resulted that the absence of cracks in protective coatings is of uttermost importance for novel biodegradable implants with proper degradation kinetics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。