Production of multimeric prostate-specific membrane antigen small-molecule radiotracers using a solid-phase 99mTc preloading strategy

采用固相 99mTc 预加载策略生产多聚前列腺特异性膜抗原小分子放射性示踪剂

阅读:6
作者:Preeti Misra, Valerie Humblet, Nadine Pannier, Wolfgang Maison, John V Frangioni

Conclusion

Our study describes a simple cartridge-based conversion of 99mTc-pertechnetate to a useful, preloaded NHS ester intermediate that takes only 25 min to prepare and results in >99% radiochemical purity. Using this chemistry, we produced a high-specific-activity, 99mTc-labeled, PSMA-targeted small molecule and demonstrate gamma-ray radioscintigraphic imaging of living human prostate cancer cells.

Methods

To convert this molecule into a clinically viable SPECT diagnostic, we have developed a simple, cartridge-based, solid-phase prelabeling strategy that, within 25 min, converts readily available and inexpensive 99mTc-pertechnetate into a chemically pure complex, with a reactive N-hydroxysuccinimide (NHS) ester, in neat organic solvent. This stable intermediate can label any amine-containing small molecule or peptide with 99mTc in 1 step, with high specific activity and without the need for high-performance liquid chromatography (HPLC).

Results

Solid-phase conversion of 99mTc-pertechnetate to 99mTc-MAS3-NHS (MAS3 is S-acetylmercaptoacetyltriserine) could be completed in 25 min, with >99% radiochemical purity and with no coligands present. This intermediate was then conjugated to adamantane-trimerized GPI (2[(3-amino-3-carboxypropyl)(hydroxy)(phosphinyl)-methyl]pentane-1,5-dioic acid) in 1 step with >95% yield and no need for HPLC purification. The final molecule bound specifically to living human tumor cells expressing PSMA on their surface. Quantitative comparison was made among GPI monomer, GPI trimer, and their 99mTc-derivatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。