N6-substituted cAMP analogs inhibit bTREK-1 K+ channels and stimulate cortisol secretion by a protein kinase A-independent mechanism

N6 取代的 cAMP 类似物通过蛋白激酶 A 非依赖机制抑制 bTREK-1 K+ 通道并刺激皮质醇分泌

阅读:9
作者:Haiyan Liu, Judith A Enyeart, John J Enyeart

Abstract

Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels whose inhibition by cAMP is coupled to membrane depolarization and cortisol secretion through complex signaling mechanisms. cAMP analogs with substitutions in the 6 position of the adenine ring selectively activate cAMP-dependent protein kinase (PKA) but not exchange proteins activated by cAMP (Epacs). In whole-cell patch-clamp recordings from AZF cells, we found that 6-benzoyl-cAMP (6-Bnz-cAMP) and 6-monobutyryl-cAMP potently inhibit bTREK-1 K+ channels, even under conditions in which PKA activity was abolished. Specifically, when applied through the patch electrode, 6-Bnz-cAMP inhibited bTREK-1 with an IC(50) of less than 0.2 microM. Inhibition of bTREK-1 by 6-Bnz-cAMP was not diminished by PKA antagonists, including N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H-89), adenosine 3'-5'cyclic monophosphothiate, Rp-isomer, protein kinase inhibitor (PKI) (6-22) amide, and myristoylated PKI (14-22), applied alone or in combination, externally and intracellularly through the patch pipette. Under similar conditions, these same antagonists completely blocked PKA activation by 6-Bnz-cAMP. Inhibition of bTREK-1 by 6-Bnz-cAMP was voltage-independent and eliminated in the absence of ATP in the pipette solution. 6-Bnz-cAMP also produced delayed increases in cortisol synthesis and the expression of CYP11a1 mRNA that were only partially blocked by PKA antagonists. These results indicate that 6-Bnz-cAMP and other 6-substituted cAMP analogs can inhibit bTREK-1 K+ channels and stimulate delayed increases in cortisol synthesis by AZF cells through a PKA- and Epac-independent mechanism. They also suggest that adrenocorticotropin and cAMP function in these cells through a third cAMP-dependent protein. Finally, although 6-modified cAMP analogs exhibit high selectivity in activating PKA over Epac, they also may interact with other unidentified proteins expressed by eukaryotic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。