Circulating tight-junction proteins are potential biomarkers for blood-brain barrier function in a model of neonatal hypoxic/ischemic brain injury

循环紧密连接蛋白是新生儿缺氧/缺血性脑损伤模型中血脑屏障功能的潜在生物标志物

阅读:5
作者:E Axel Andersson, Carina Mallard, C Joakim Ek

Background

Neonatal encephalopathy often leads to lifelong disabilities with limited treatments currently available. The brain vasculature is an important factor in many neonatal neurological disorders but there is a lack of diagnostic tools to evaluate the brain vascular dysfunction of neonates in the clinical setting. Measurement of blood-brain barrier tight-junction (TJ) proteins have shown promise as biomarkers for brain injury in the adult. Here we tested the biomarker potential of tight-junctions in the context of neonatal brain injury.

Conclusions

Levels of circulating claudin-5 and occludin are increased after hypoxic/ischemic brain injuries and blood-brain barrier-impairment and have promise as early biomarkers for cerebral vascular dysfunction and as a tool for risk assessment of neonatal brain injuries.

Methods

The levels of TJ-proteins (occluding, claudin-5, and zonula occludens protein 1) in both blood plasma and cerebrospinal fluid (CSF) as well as blood-brain barrier function via 14C-sucrose (342 Da) and Evans blue extravasation were measured in a hypoxia/ischemia brain-injury model in neonatal rats.

Results

Time-dependent changes of occludin and claudin-5 levels could be measured in blood and CSF after hypoxia/ischemia with males generally having higher levels than females. The levels of claudin-5 in CSF correlated with the severity of the brain injury at 24 h post- hypoxia/ischemia. Simultaneously, we detected early increase in blood-brain barrier-permeability at 6 and 24 h after hypoxia/ischemia. Conclusions: Levels of circulating claudin-5 and occludin are increased after hypoxic/ischemic brain injuries and blood-brain barrier-impairment and have promise as early biomarkers for cerebral vascular dysfunction and as a tool for risk assessment of neonatal brain injuries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。