The effects of a firefighting simulation on the vascular and autonomic functions and cognitive performance: a randomized crossover study

消防模拟对血管和自主神经功能以及认知能力的影响:一项随机交叉研究

阅读:5
作者:Iara G Teixeira, Marcio R Verzola, Richard E Filipini, Guilherme F Speretta

Discussion

Although firefighting Simulation did not substantially change cognitive performance, the lower carotid artery reactivity and parasympathetic modulation to the heart during the cold pressor test may contribute to greater vulnerability to cardiovascular events in firefighters on duty.

Methods

Sixteen firefighters (37.8 ± 5.6 years) underwent anthropometry, mental health status, and sleep quality assessments. They randomly performed two interventions, Simulation (Firefighting tasks; 10.0 ± 1.1 min) and Control (rest for 10 min), on different days. After both interventions, cognitive performance was assessed using the Stroop Test, Paced Auditory Serial Addition Test, and Trail Making Test. Then, the vascular function was assessed using ultrasonography through the carotid artery reactivity to the cold pressor test. The arterial pressure, heart rate, and cardiac intervals were recorded before interventions. The cardiac intervals were also measured during the cold pressor test. Student's t-test and Wilcoxon were used for comparisons between Control and Simulation and the analysis of variance for repeated measures was used for comparison over time during the cold pressor test. A significance level of p < 0.05 was adopted.

Results

Although the mean and maximum heart rate were higher before the Simulation (p < 0.0001), all the heart rate variability parameters (p > 0.05) and mean arterial pressure (p > 0.3795) were similar before the interventions. After Simulation, the cognitive performance was similar to Control (p > 0.05), except for the improvement in Stroop Test part B (p < 0.0001). After Simulation, carotid artery reactivity was attenuated (p < 0.0010). During the cold pressor test, the high-frequency band of the heart rate variability was lower after the Simulation (p < 0.0104).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。