Human in vitro induced T regulatory cells and memory T cells share common demethylation of specific FOXP3 promoter region

人类体外诱导的 T 调节细胞和记忆性 T 细胞具有特定 FOXP3 启动子区域的共同去甲基化

阅读:5
作者:Philippe Bégin #, Janika Schulze #, Udo Baron, Sven Olek, Rebecca N Bauer, Laura Passerini, Rosa Baccheta #, Kari C Nadeau #

Background

The FOXP3 gene is the master regulator for T regulatory cells and is under tight DNA methylation control at the Treg specific demethylated region (TSDR) in its first intron. This said, methylation of its promoter region, the significance of which is unknown, has also been associated with various immune-related disease states such as asthma, food allergy, auto-immunity and cancer. Here, we used induced T regulatory cells (iTreg) as a target cell population to identify candidate hypomethylated CpG sites in the FOXP3 gene promoter to design a DNA methylation quantitative assay for this region. Findings: Three CpG sites at the promoter region showed clear demethylation pattern associated with high FOXP3 expression after activation in presence of TGFβ and were selected as primary targets to design methylation-dependent RT-PCR primers and probes. We then examined the methylation of this 'inducible-promoter-demethylated-region' (IPDR) in various FOXP3+ T cell subsets. Both naïve and memory thymic-derived Treg cells were found to be fully demethylated at both the IPDR and TSDR. Interestingly, in addition to iTregs, both CD25- and CD25(lo) conventional memory CD4+CD45RA- T cells displayed a high fraction of IPDR demethylated cells in absence of TSDR demethylation.

Conclusion

This implies that the fraction of memory T cells should be taken in account when interpreting FOXP3 promoter methylation results from clinical studies. This approach, which is available for testing in clinical samples could have diagnostic and prognostic value in patients with immune or auto-inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。