N-Terminally Truncated and Pyroglutamate-Modified Aβ Forms Are Measurable in Human Cerebrospinal Fluid and Are Potential Markers of Disease Progression in Alzheimer's Disease

端截短和焦谷氨酸修饰的 Aβ 形式可在人类脑脊液中测量,并且是阿尔茨海默病疾病进展的潜在标志物

阅读:7
作者:Guido Domingo, Luisa Benussi, Claudia Saraceno, Michela Bertuzzi, Roland Nicsanu, Antonio Longobardi, Sonia Bellini, Alfredo Cagnotto, Mario Salmona, Giuliano Binetti, Roberta Ghidoni

Abstract

Alzheimer's disease (AD) is a pathology characterized by the accumulation in the brain of intracellular and extracellular amyloid-β (Aβ) aggregates, especially of Aβ1-40 and Aβ1-42 peptides. It is known that N-terminally truncated or modified Aβ forms also exist in AD brains and cerebrospinal fluid (CSF), and they play a key role in the pathogenesis of the disease. Herein, we developed an antibody-free method based on Solid-Phase Extraction and Electrospray Ionization Liquid Chromatography Mass Spectrometry for the identification and quantitation in human CSF of Aβ isoforms. In human CSF, we could detect and quantify a panel of 19 Aβ isoforms, including N-terminally truncated and pyroglutamate-modified forms, never quantified before in CSF. Among these, we identified novel N-terminally truncated Aβ species: four bound to copper and two phosphorylated forms, which were found to be the most common proteoforms in human CSF along with Aβ1-40, Aβ3-40, and AβpE11-42. We tested the newly developed and validated method in a pilot study on CSF from elderly individuals with subjective memory complaints (SMCs, n = 9), mild cognitive impairment (MCI, n = 18), and AD (n = 15); along with Aβ1-42, five N-terminally truncated forms (Aβ11-40, Aβ3-42, AβpE11-42, AβpE3-40, and Aβ4-40 Cu2+) are altered in AD/MCI. Thus, we demonstrated that N-terminally truncated and pyroglutamate-modified Aβ can be quantified in human CSF, and five of them, along with Aβ1-42, are potential markers of AD progression. The described method could represent a useful tool for patients' stratification and monitoring. Moreover, the newly identified Aβ CSF species might represent new potential therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。