Ablation of μ opioid receptor-expressing GABA neurons in rostromedial tegmental nucleus increases ethanol consumption and regulates ethanol-related behaviors

消融内侧被盖核中表达 μ 阿片受体的 GABA 神经元可增加乙醇消耗并调节乙醇相关行为

阅读:12
作者:Rao Fu, Xing Chen, Wanhong Zuo, Jing Li, Seungwoo Kang, Li-Hua Zhou, Allan Siegel, Alex Bekker, Jiang-Hong Ye

Abstract

There has been increasing interest in the rostromedial tegmental nucleus (RMTg), given its potential regulatory role in many aversion-related behaviors. The RMTg contains mostly GABAergic neurons, sends a dense inhibitory projection to dopamine neurons in the midbrain, and is rich with μ-opioid receptors (MOR). Like most addictive drugs, ethanol has both aversive and rewarding properties. However, the cellular mechanisms underlying the effects of ethanol, particularly the aversive effect that limits its intake are not well understood. Recent studies have linked aversion with synaptic inhibition of dopamine neurons in the ventral tegmental area. To determine a potential role that the RMTg plays in the effect of ethanol, in this study, we employed a neurotoxin, dermorphin-saporin (DS), to lesion RMTg neurons prior to assessing ethanol-related behaviors. Rats were infused with DS bilaterally into the RMTg. This manipulation substantially increased the intake and preference for ethanol but not sucrose. It also reduced the number of neurons with MOR and glutamic acid decarboxylase 67 immunoreactivity within the RMTg. These changes did not occur after intra-RMTg infusion of blank saporin or vehicle. Importantly, intra-RMTg DS infusion significantly enhanced expression of conditioned place preference induced by ethanol (2 g/kg, i.p.), and slowed the extinction process. These results suggest that MOR-expressing GABAergic neurons in the RMTg contribute significantly to the regulation of ethanol consumption and related behaviors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。