Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress

渗透和高温复合胁迫对高粱脯氨酸积累与蛋白质分泌的调控

阅读:10
作者:Samkelisiwe P Ngwenya, Sellwane J Moloi, Nemera G Shargie, Adrian P Brown, Stephen Chivasa, Rudo Ngara

Abstract

Plants reprogramme their proteome to alter cellular metabolism for effective stress adaptation. Intracellular proteomic responses have been extensively studied, and the extracellular matrix stands as a key hub where peptide signals are generated/processed to trigger critical adaptive signal transduction cascades inaugurated at the cell surface. Therefore, it is important to study the plant extracellular proteome to understand its role in plant development and stress response. This study examined changes in the soluble extracellular sub-proteome of sorghum cell cultures exposed to a combination of sorbitol-induced osmotic stress and heat at 40 °C. The combined stress significantly reduced metabolic activity and altered protein secretion. While cells treated with osmotic stress alone had elevated proline content, the osmoprotectant in the combined treatment remained unchanged, confirming that sorghum cells exposed to combined stress utilise adaptive processes distinct from those invoked by the single stresses applied separately. Reactive oxygen species (ROS)-metabolising proteins and proteases dominated differentially expressed proteins identified in cells subjected to combined stress. ROS-generating peroxidases were suppressed, while ROS-degrading proteins were upregulated for protection from oxidative damage. Overall, our study provides protein candidates that could be used to develop crops better suited for an increasingly hot and dry climate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。