Age-related differences in NFkappaB translocation and Bcl-2/Bax ratio caused by TNFalpha and Abeta42 promote survival in middle-age neurons and death in old neurons

TNFalpha 和 Abeta42 引起的 NFkappaB 易位和 Bcl-2/Bax 比率的年龄相关差异促进了中年神经元的存活和老年神经元的死亡

阅读:6
作者:Jigisha R Patel, Gregory J Brewer

Abstract

Alzheimer's disease is associated with an age-related accumulation of Abeta and inflammation. The inflammatory mediator, TNFalpha activates a signaling cascade involving NFkappaB translocation to the nucleus and a beneficial or detrimental transcriptional response, depending on the age of the neurons and the type of stress applied. Relative to treatment with Abeta42 alone, previously we found that TNFalpha plus Abeta42, applied to old rat neurons (24 month) is toxic, while the same treatment of middle-age neurons (10 month) is protective. In contrast to improved survival of middle-age rat cortical neurons, neurons from old rats are killed by TNFalpha plus Abeta42 despite greater p50 nuclear translocation. In middle-age neurons, blocking TNFR1 does not affect NFkappaB translocation, whereas blocking TNFR2 results in an increase in NFkappaB translocation. For old neurons, blocking either receptor, does not change NFkappaB translocation, but improves cell survival. To account for these effects on cell viability in response to TNF+Abeta, measures of the Bcl-2/Bax ratio positively correlate with survival. In the setting of old neurons, these results suggest that overactivated nuclear translocation of NFkappaB and lower Bcl-2 levels promote death that is reduced by inhibition of either TNFR1 or R2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。