Positive chronotropic action of HCN channel antagonism in human collecting lymphatic vessels

HCN通道拮抗剂在人体集合淋巴管中的正性变时性作用

阅读:10
作者:Jens Majgaard, Frederik G Skov, Sukhan Kim, Vibeke Elisabeth Hjortdal, Donna M B Boedtkjer

Abstract

Spontaneous action potentials precede phasic contractile activity in human collecting lymphatic vessels. In this study, we investigated the expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in human collecting lymphatics and by pharmacological inhibition ex vivo tested their potential role in controlling contractile function. Spontaneous and agonist-evoked tension changes of isolated thoracic duct and mesenteric lymphatic vessels-obtained from surgical patients with informed consent-were investigated by isometric myography, and ivabradine, ZD7288 or cesium were used to inhibit HCN. Analysis of HCN isoforms by RT-PCR and immunofluorescence revealed HCN2 to be the predominantly expressed mRNA isoform in human thoracic duct and mesenteric lymphatic vessels and HCN2-immunoreactivity confirmed protein expression in both vessel types. However, in functional experiments ex vivo the HCN inhibitors ivabradine, ZD7288, and cesium failed to lower contraction frequency: conversely, all three antagonists induced a positive chronotropic effect with concurrent negative inotropic action, though these effects first occurred at concentrations regarded as supramaximal for HCN inhibition. Based on these results, we conclude that human collecting vessels express HCN channel proteins but under the ex vivo experimental conditions described here HCN channels have little involvement in regulating contraction frequency in human collecting lymphatic vessels. Furthermore, HCN antagonists can produce concentration-dependent positive chronotropic and negative inotropic effects, which are apparently unrelated to HCN antagonism.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。