Immobilizing c(RGDfc) on the surface of metal-phenolic networks by thiol-click reaction for accelerating osteointegration of implant

通过硫醇点击反应将 c(RGDfc) 固定在金属酚醛网络表面以加速植入物的骨整合

阅读:2
作者:Zeyu Shou, Zhibiao Bai, Kaiyuan Huo, Shengwu Zheng, Yizhe Shen, Han Zhou, Xiaojing Huang, Hongming Meng, Chenwei Xu, Shaohao Wu, Na Li, Chun Chen

Abstract

The limited osteointegration often leads to the failure of implant, which can be improved by fixing bioactive molecules onto the surface, such as arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Metal-Phenolic Networks (MPNs) have garnered increasing attention from different disciplines in recent years due to their simple and rapid process for depositing on various substrates or particles with different shapes. However, the lack of cellular binding sites on MPNs greatly blocks its application in tissue engineering. In this study, we present a facile and efficient approach for producing PC/Fe@c(RGDfc) composite coatings through the conjugation of c(RGDfc) peptides onto the surface of PC/Fe-MPNs utilizing thiol-click reaction. By combined various techniques (ellipsometry, X-ray photoelectron spectroscopy, Liquid Chromatography-Mass Spectrometry, water contact angle, scanning electronic microscopy, atomic force microscopy) the physicochemical properties (composition, coating mechanism and process, modulus and hydrophilicity) of PC/Fe@c(RGDfc) surface were characterized in detail. In addition, the PC/Fe@c(RGDfc) coating exhibits the remarkable ability to positively modulate cellular attachment, proliferation, migration and promoted bone-implant integration in vivo, maintaining the inherent features of MPNs: anti-inflammatory, anti-oxidative properties, as well as multiple substrate deposition. This work contributes to engineering MPNs-based coatings with bioactive molecules by a facile and efficient thiol-click reaction, as an innovative perspective for future development of surface modification of implant materials.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。