All-optical reporting of inhibitory receptor driving force in the nervous system

神经系统中抑制受体驱动力的全光学报告

阅读:10
作者:Joshua S Selfe, Teresa J S Steyn, Eran F Shorer, Richard J Burman, Kira M Düsterwald, Ariel Z Kraitzick, Ahmed S Abdelfattah, Eric R Schreiter, Sarah E Newey, Colin J Akerman, Joseph V Raimondo1

Abstract

Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the nervous system, fast synaptic inhibition is mediated by chloride permeable GABAA and glycine receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DFGABAA). Here we present a tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID's ability to provide accurate, high-throughput measurements of resting and dynamic DFGABAA from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFGABAA, reveals differences in DFGABAA between neurons and astrocytes, and affords the first in vivo measurements of intact DFGABAA. This work extends our understanding of inhibitory synaptic transmission and demonstrates the potential for all-optical methods to assess ionic driving forces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。