Immunization against the transgene but not the TetON switch reduces expression from gutless adenoviral vectors in the brain

针对转基因而非 TetON 开关的免疫接种可降低大脑中无肠腺病毒载体的表达

阅读:6
作者:Weidong Xiong, Marianela Candolfi, Kurt M Kroeger, Mariana Puntel, Sonali Mondkar, Daniel Larocque, Chunyan Liu, James F Curtin, Donna Palmer, Philip Ng, Pedro R Lowenstein, Maria G Castro

Abstract

Immune responses against vectors or encoded transgenes can impose limitations on gene therapy. We demonstrated that tetracycline-regulated high-capacity adenoviral vectors (HC-Ads) sustain regulated transgene expression in the brain even in the presence of systemic pre-existing immune responses against adenoviruses. In this study we assessed whether systemic pre-existing immune responses against the transgene products, i.e., beta-Gal or the tetracycline-dependent (TetON) regulatory transcription factors (rtTA2(S)M2 and the tTS(Kid)), affect transgene expression levels and the safety profile of HC-Ads in the brain. We pre-immunized mice with plasmids encoding the TetON switch expressing rtTA2(S)M2 and the tTS(Kid) or beta-Gal. HC-Ads expressing beta-Gal under the control of the TetON switch were then injected into the striatum. We assessed levels and distribution of beta-Gal expression, and evaluated local inflammation and neuropathological changes. We found that systemic immunity against beta-Gal, but not against the TetON switch, led to inflammation and reduction of transgene expression in the striatum. Therefore, the regulatory TetON switch appears to be safe to use, and capable of sustaining transgene expression in the brain even in the presence of an immune response against its components. Systemic immunity against the transgene had the effect of curtailing its expression, thereby affecting the efficacy and safety of gene delivery to the brain. This factor should be considered when developing gene therapies for neurological use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。