Sensitized activation of Fos and brain-derived neurotrophic factor in the medial prefrontal cortex and ventral tegmental area accompanies behavioral sensitization to amphetamine

内侧前额皮质和腹侧被盖区中 Fos 和脑源性神经营养因子的敏化激活伴随着对苯丙胺的行为敏化

阅读:4
作者:Sanya Fanous, Michael J Lacagnina, Ella M Nikulina, Ronald P Hammer Jr

Abstract

Behavioral sensitization, or augmented locomotor response to successive drug exposures, results from neuroadaptive changes contributing to addiction. Both the medial prefrontal cortex (mPFC) and ventral tegmental area (VTA) influence behavioral sensitization and display increased immediate-early gene and BDNF expression after psychostimulant administration. Here we investigate whether mPFC neurons innervating the VTA exhibit altered Fos or BDNF expression during long-term sensitization to amphetamine. Male Sprague-Dawley rats underwent unilateral intra-VTA infusion of the retrograde tracer Fluorogold (FG), followed by 5 daily injections of either amphetamine (2.5 mg/kg, i.p.) or saline vehicle. Four weeks later, rats were challenged with amphetamine (1.0 mg/kg, i.p.) or saline (1.0 mL/kg, i.p.). Repeated amphetamine treatment produced locomotor sensitization upon drug challenge. Two hours later, rats were euthanized, and mPFC sections were double-immunolabeled for either Fos-FG or Fos-BDNF. Tissue from the VTA was also double-immunolabeled for Fos-BDNF. Amphetamine challenge increased Fos and BDNF expression in the mPFC regardless of prior drug experience, and further augmented mPFC BDNF expression in sensitized rats. Similarly, more Fos-FG and Fos-BDNF double-labeling was observed in the mPFC of sensitized rats compared to drug-naïve rats after amphetamine challenge. Repeated amphetamine treatment also increased VTA BDNF, while both acute and repeated amphetamine treatment increased Fos and Fos-BDNF co-labeling, an effect enhanced in sensitized rats. These findings point to a role of cortico-tegmental BDNF in long-term amphetamine sensitization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。