Genome-wide and sister chromatid-resolved profiling of protein occupancy in replicated chromatin with ChOR-seq and SCAR-seq

使用 ChOR-seq 和 SCAR-seq 对复制染色质中的蛋白质占有率进行全基因组和姊妹染色单体解析分析

阅读:9
作者:Nataliya Petryk #, Nazaret Reverón-Gómez #, Cristina González-Aguilera #, Maria Dalby, Robin Andersson, Anja Groth

Abstract

Elucidating the mechanisms underlying chromatin maintenance upon genome replication is critical for the understanding of how gene expression programs and cell identity are preserved across cell divisions. Here, we describe two recently developed techniques, chromatin occupancy after replication (ChOR)-seq and sister chromatids after replication (SCAR)-seq, that profile chromatin occupancy on newly replicated DNA in mammalian cells in 5 d of bench work. Both techniques share a common strategy that includes pulse labeling of newly synthesized DNA and chromatin immunoprecipitation (ChIP), followed by purification and high-throughput sequencing. Whereas ChOR-seq quantitatively profiles the post-replicative abundance of histone modifications and chromatin-associated proteins, SCAR-seq distinguishes chromatin occupancy between nascent sister chromatids. Together, these two complementary techniques have unraveled key mechanisms controlling the inheritance of modified histones during replication and revealed locus-specific dynamics of histone modifications across the cell cycle. Here, we provide the experimental protocols and bioinformatic pipelines for these methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。