Dot1l expression predicts adverse postoperative prognosis of patients with clear-cell renal cell carcinoma

Dot1l 表达预测透明细胞肾细胞癌患者术后不良预后

阅读:6
作者:Yang Qu, Li Liu, Jiajun Wang, Wei Xi, Yu Xia, Qi Bai, Ying Xiong, Qilai Long, Jiejie Xu, Jianming Guo

Background

Disruptor of telomeric silencing 1-like (Dot1l), a histone methyltransferase that targets the histone H3 lysine 79 (H3K79), has been reported that its high expression is associated with various cancers, while the association between Dot1l expression and clear-cell renal cell carcinoma (ccRCC) is still unknown. Patients and

Conclusion

Dot1l expression is a promising independent prognostic indicator for postoperative recurrence and survival of patients with ccRCC.

Methods

We retrospectively enrolled 282 patients with ccRCC undergoing nephrectomy from a single institution between 2005 and 2007, with a median follow-up of 99 months. Dot1l expression was evaluated by immunohistochemistry in clinical specimens. We compared the clinical outcomes by Kaplan-Meier survival analyses and assessed the prognostic value of Dot1l expression. Harrell's concordance index (C-index) was used to assess the predictive accuracy of different prognostic models.

Results

Higher Dot1l expression indicated poorer OS (P<0.001) and RFS (P<0.001) in patients with ccRCC. Moreover, Dot1l expression could stratify ccRCC patients in pT stage, Fuhrman grade and SSIGN/ Leibovich subgroups, which might redefine individual risk stratification. Multivariate analyses further indicated that Dot1l expression was an independent prognostic factor for OS (P=0.007) and RFS (P=0.001). The prognostic accuracy of conventional prognostic models was notably improved with Dot1l integration. Two nomograms and calibration plots were built to predict OS and RFS for patients with ccRCC and performed better based on C-index value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。