Assessment of Cellulose Nanofiber-Based Elastase Biosensors to Inflammatory Disease as a Function of Spacer Length and Fluorescence Response

评估基于纤维素纳米纤维的弹性蛋白酶生物传感器对炎症疾病的间隔长度和荧光响应

阅读:9
作者:Michael W Easson, Jacobs H Jordan, J Vincent Edwards, Nicolette T Prevost, Rebecca A Dupre, Matthew B Hillyer, Isabel M Lima, Sunghyun Nam

Abstract

Inflammatory disease biomarker detection has become a high priority in point-of-care diagnostic research in relation to chronic wounds, with a variety of sensor-based designs becoming available. Herein, two primary aspects of biosensor design are examined: (1) assessment of a cellulose nanofiber (CNF) matrix derived from cotton ginning byproducts as a sensor transducer surface; and (2) assessment of the relation of spacer length and morphology between the CNF cellulose backbone and peptide fluorophore as a function of sensor activity for porcine pancreatic and human neutrophil elastases. X-ray crystallography, specific surface area, and pore size analyses confirmed the suitability of CNF as a matrix for wound care diagnostics. Based upon the normalized degree of substitution, a pegylated-linker connecting CNF transducer substrate to peptide fluorophore showed the greatest fluorescence response, compared to short- and long-chain alkylated linkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。