The initiation of synaptic 2-AG mobilization requires both an increased supply of diacylglycerol precursor and increased postsynaptic calcium

突触 2-AG 动员的启动需要增加二酰甘油前体的供应和增加突触后钙

阅读:8
作者:Brian C Shonesy, Danny G Winder, Sachin Patel, Roger J Colbran

Abstract

On-demand postsynaptic synthesis and release of endocannabinoid lipids and subsequent binding to presynaptic CB1 receptors (CB1Rs) mediates short and long-term depression (LTD) of excitatory transmission in many brain regions. However, mechanisms involved in the synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) by diacylglycerol lipase α (DGLα) are poorly understood. Since Gq-coupled receptor activation can stimulate production of a major DGL substrate 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) by PLCβ, we sought to determine if 2-AG biosynthesis was limited only by a lack of substrate availability, or if other pathways, such as Ca(2+) signaling, also need to be simultaneously engaged. To address this question, we loaded medium spiny neurons of the dorsolateral striatum with SAG while monitoring excitatory synaptic inputs. SAG-loading had no significant effect on evoked excitatory synaptic currents when cells were voltage-clamped at -80 mV. However, depolarization of MSNs to -50 mV revealed a SAG-loading dependent decrease in the amplitude of excitatory currents that was accompanied by an increase in paired pulse ratio, consistent with decreased glutamate release. Both effects of loading SAG at -50 mV were blocked by chelation of postsynaptic Ca(2+) using BAPTA or by bath application of tetrahydrolipstatin (THL), a DGL inhibitor. Loading of SAG into glutamatergic pyramidal neurons of the amygdala similarly inhibited excitatory synaptic inputs and increased the PPR. SAG-induced depression was absent in both regions from mice lacking CB1Rs. These data show that increasing substrate availability alone is insufficient to drive 2-AG mobilization and that DGL-dependent synaptic depression via CB1R activation requires postsynaptic Ca(2+) signals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。