N-CAM dysfunction and unexpected accumulation of PSA-NCAM in brain of adult-onset autosomal-dominant leukodystrophy

成人型常染色体显性脑白质营养不良症患者的脑内 N-CAM 功能障碍和 PSA-NCAM 意外积累

阅读:5
作者:Marco Piccinini, Barbara Buccinnà, Giovanni De Marco, Elisa Lupino, Cristina Ramondetti, Silvia Grifoni, Barbara Votta, Maria Teresa Giordana, Maria Teresa Rinaudo

Abstract

Previously, myelin from cerebral white matter (CWM) of two subjects of a family with orthochromatic adult-onset autosomal-dominant leukodystrophy (ADLD) was disclosed to exhibit defective large isoform of myelin-associated glycoprotein (L-MAG) and patchy distribution only in the elder subject. L-MAG and neural cell adhesion molecule (N-CAM) (N-CAM 180, 140, and 120) are structurally related and concur to myelin/axon interaction. In early developmental stages, in neurons and glia N-CAM is converted into polysialylated (PSA)-NCAM by two sialyltransferases sialyltransferase-X (STX) and polysialyltransferase-1 (PST). Notably, PSA-NCAM disrupts N-CAM adhesive properties and is nearly absent in the adult brain. Here, CWM extracts and myelin of the two subjects were searched for the expression pattern of the N-CAM isoforms and PSA-NCAM, and their CWM was evaluated for N-CAM, STX and PST gene copy number and gene expression as mRNA. Biochemically, we disclosed that in CWM extracts and myelin from both subjects, PSA-NCAM accumulates, N-CAM 180 considerably increases, N-CAM 140 is modestly modified and N-CAM 120 remarkably decreases; duplication of genes encoding N-CAM, STX and PST was not revealed, whereas PST mRNA was clearly increased. Immunohistochemically, in CWM of both subjects, we found an unusually diffuse accumulation of PSA-NCAM without inflammation markers. PSA-NCAM persistence, up-regulated PST mRNA and previously uncovered defective L-MAG may be early pathogenetic events in this ADLD form.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。