Glycine transporter-1 controls nonsynaptic inhibitory actions of glycine receptors in the neonatal rat hippocampus

甘氨酸转运蛋白-1 控制新生大鼠海马中甘氨酸受体的非突触抑制作用

阅读:6
作者:Sampsa T Sipilä, Albert Spoljaric, Mari A Virtanen, Inkeri Hiironniemi, Kai Kaila

Abstract

Although functional glycinergic synapses have not been identified in the hippocampus, neurons in this area express Cl(-) permeable extrasynaptic glycine receptors (GlyRs). In experiments on CA3 pyramidal neurons on postnatal day 0-6 rat hippocampal slices, we detected robust GlyR activity as a tonic current and as single-channel events. Glycine release was independent of neuronal activity or extracellular Ca(2+). The endogenous GlyR activity was strongly enhanced by inhibition of the glycine-transporter-1 (GlyT1). Blockade of GlyT1 also caused a profound increase in the baseline current induced by exogenous glycine. Inhibition of GlyT1 reduced the frequency of spontaneous network events known as field giant depolarizing potentials (fGDPs) and of the unit activity in the absence of synaptic transmission. This inhibitory action on fGDPs was mimicked by applying 2 μm glycine or 0.1 μm isoguvacine, a GABAA-receptor agonist. Furthermore, 2 μm glycine suppressed unit spiking in the absence of synaptic transmission. Hence, despite the well known depolarizing Cl(-) equilibrium potential of neonatal hippocampal neurons, physiologically relevant extracellular glycine concentrations can exert an inhibitory action. The present data show that, akin to GABA uptake, GlyT1 exerts a powerful modulatory action on network events in the newborn hippocampus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。