Alpha adrenergic receptor signaling in the hypothalamic paraventricular nucleus is diminished by the chronic intermittent hypoxia model of sleep apnea

慢性间歇性缺氧睡眠呼吸暂停模型会减弱下丘脑室旁核中的 α 肾上腺素受体信号

阅读:5
作者:Gean Domingos-Souza, Diana Martinez, Steven Sinkler, Cheryl M Heesch, David D Kline

Abstract

Chronic intermittent hypoxia (CIH) is a model for obstructive sleep apnea. The paraventricular nucleus (PVN) of the hypothalamus has been suggested to contribute to CIH-induced exaggerated cardiorespiratory reflexes, sympathoexcitation and hypertension. This may occur, in part, via activation of the dense catecholaminergic projections to the PVN that originate in the brainstem. However, the contribution of norepinephrine (NE) and activation of its alpha-adrenergic receptors (α-ARs) in the PVN after CIH exposure is unknown. We hypothesized CIH would increase the contribution of catecholaminergic input. To test this notion, we determined the expression of α-AR subtypes, catecholamine terminal density, and synaptic properties of PVN parvocellular neurons in response to α-AR activation in male Sprague-Dawley normoxic (Norm) and CIH exposed rats. CIH decreased mRNA for α1d and α2b AR. Dopamine-β-hydroxylase (DβH) terminals in the PVN were similar between groups. NE and the α1-AR agonist phenylephrine (PE) increased sEPSC frequency after Norm but not CIH. Block of α1-ARs with prazosin alone did not alter sEPSCs after either Norm or CIH but did prevent agonist augmentation of sEPSC frequency following normoxia. These responses to NE were mimicked by PE during action potential block suggesting presynaptic terminal alterations in CIH. Altogether, these results demonstrate that α1-AR activation participates in neuronal responses in Norm, but are attenuated after CIH. These results may provide insight into the cardiovascular, respiratory and autonomic nervous systems alterations in obstructive sleep apnea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。