Eco-friendly methodology for removing and recovering rare earth elements from saline industrial wastewater

从含盐工业废水中去除和回收稀土元素的环保方法

阅读:11
作者:Thainara Viana, Nicole Ferreira, Daniela S Tavares, Azadeh Abdolvaseei, Eduarda Pereira, Bruno Henriques

Abstract

In this study, response surface methodology (RSM) was applied with a Box-Behnken design to optimize the biosorption (removal and bioconcentration) of rare earth elements (REEs) (Y, La, Ce Eu, Gd, Tb) by living Ulva sp. from diluted industrial wastewaters (also containing Pt and the classic contaminants Hg, Pb, Zn, Cu, Co, and Cd). Element concentration (A: 10-190 μg/L), wastewater salinity (B: 15-35), and Ulva sp. dosage (C: 1.0-5.0 g/L) were the operating parameters chosen for optimization. Analysis of the Box-Behnken central point confirmed the reproducibility of the methodology and p-values below 0.0001 validated the developed mathematical models. The largest inter-element differences were observed at 24 h, with most REEs, Cu, Pb and Hg showing removals ≥ 50 %. The factor with the greatest impact (positive) on element removal was the initial seaweed dosage (ANOVA, p < 0.05). The optimal conditions for REEs removal were an initial REEs concentration of 10 μg/L, at a wastewater salinity of 15, and an Ulva sp. dosage of 5.0 g/L, attaining removals up to 88 % in 24 h. Extending the time to 96 h allowed seaweed dosage to be reduced to 4.2 g/L while achieving removals ≥ 90 %. The high concentrations in REE-enriched biomass (∑REEs of 3222 μg/g), which are up to 3000 times higher than those originally found in water and exceed those in common ores, support their use as an alternative source of these critical raw materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。