Different dynamics of aquaporin 4 and glutamate transporter-1 distribution in the perineuronal and perivascular compartments during ischemic stroke

缺血性中风期间水通道蛋白 4 和谷氨酸转运蛋白-1 在神经元周围和血管周围区域分布的不同动态

阅读:6
作者:Laurentiu Mogoanta, Marius Ciurea, Ionica Pirici, Claudiu Margaritescu, Cristiana Simionescu, Daniela A Ion, Daniel Pirici

Abstract

Aquaporin-4 (AQP4) and glutamate transporter-1 (GLT-1) represent the major water and glutamate astrocyte buffering gateways in the brain. Utilizing perilesional ischemic human cortices, we have performed here for the first time an integrative assessment on both AQP4 and GLT-1, and on their proximity to blood vessels and neurons. Counting the relative number of AQP4±/GLT-1±/glial fibrillary acidic protein± cells showed that double-positive variants were overall most frequent, and their number tended to decrease from organized and recent perilesional cortices to controls. AQP4/GLT-1 colocalization showed higher coefficients for the perilesional cortices compared with controls, suggesting an increased water/glutamate-buffering capability. Distance frequency analysis of AQP4/GLT-1 in relationship to neurons showed that both markers were concentrated at 20-40 μm around the perikarya; with AQP4 being more abundant in close proximity, these differences were not being driven by changes in neuropil density alone. Our study suggests a dual, simultaneous astrocytic function depending on the relative distance to neurons and vessels, with increased water and glutamate-buffering capability in the mid perineuronal space, and an increased water-buffering capability in the immediate perineuronal space, even higher than around vessels. Thus, adding specific AQP4/GLT-1 modulator agents selectively depending on the acute/chronic phase of stroke might increase the efficacy of existing treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。