Triterpenoids from Protorhus longifolia Exhibit Hypocholesterolemic Potential via Regulation of Cholesterol Biosynthesis and Stimulation of Low-Density Lipoprotein Uptake in HepG2 Cells

长叶原木中的三萜类化合物通过调节胆固醇生物合成和刺激 HepG2 细胞中的低密度脂蛋白摄取表现出降胆固醇潜力

阅读:5
作者:Musawenkosi Ndlovu, June C Serem, Mamoalosi A Selepe, Andrew R Opoku, Megan J Bester, Zeno Apostolides, Rebamang A Mosa

Abstract

The increasing incidence of hypercholesterolemia-related diseases even in the presence of the currently available cholesterol-lowering drugs indicates a need to discover new therapeutic drugs. This study aimed to investigate the hypocholesterolemic potential of two triterpenoids isolated from Protorhus longifolia stem bark. In silico techniques and in vitro enzyme assays were used to evaluate the potential inhibition of cholesterol esterase and HMG-CoA reductase by the triterpenoids (ARM-2 and RA-5). The toxicity, modulation of low-density lipoprotein (LDL) uptake, and associated gene expression were determined in HepG2 hepatocytes. In silico molecular docking revealed that ARM-2 compared with RA-5 has a relatively stronger binding affinity for both enzymes. Both triterpenoids further demonstrated promising in silico drug-likeness properties and favorable ADMET profiles characterized by high intestinal absorption and lack of CYP450 enzyme inhibition. The compounds further showed, to varying degrees of efficacy, inhibition of cholesterol micellization as well as both cholesterol esterase and HMG-CoA reductase activities with IC50 values ranging from 16.4 to 41.1 μM. Moreover, enhanced hepatic cellular LDL uptake and the associated upregulation of the LDL-R and SREBP-2 gene expression were observed in the triterpenoid-treated HepG2 cells. It is evident that the triterpenoids, especially ARM-2, possess hypocholesterolemic properties, and these molecules can serve as leads or structural templates for the development of new hypocholesterolemic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。