Testosterone upregulates anion secretion across porcine vas deferens epithelia in vitro

睾酮上调猪输精管上皮细胞的阴离子分泌

阅读:8
作者:Fernando Pierucci-Alves, Cameron L Duncan, Bruce D Schultz

Abstract

Testosterone induces and maintains prostaglandin endoperoxide synthase 2 (PTGS2, also known as cyclooxygenase 2) expression in vas deferens epithelial cells, but it remains unknown whether this has a physiological role in the context of male reproductive biology. Prostaglandins induce concentration-dependent increases in anion secretion in porcine vas deferens epithelial cell (1 degrees PVD) monolayers, where bicarbonate contributes to cAMP-stimulated anion secretion. Moreover, bradykinin induces anion secretion across 1 degrees PVD monolayers that is indomethacin sensitive, and both PTGS2 and PTGS1 are expressed in this model system. Therefore, it was hypothesized that testosterone modulates anion secretion across vas deferens epithelia via PTGS-dependent pathways and prostaglandin synthesis. Porcine vas deferens epithelial cells were isolated and cultured as monolayers on permeable supports until assayed in modified Ussing chambers. RNA and protein were isolated concurrently for semiquantitative expression analysis. Testosterone upregulated basal and bradykinin-induced short-circuit current across 1 degrees PVD monolayers, indicative of anion secretion. Testosterone also induced greater transepithelial electrical resistance. Increases in anion secretion were associated with preferential upregulation of PTGS2 at the mRNA and protein levels. In addition, testosterone induced greater basal and bradykinin-induced anion secretion across vas deferens epithelial cells isolated from the distal segment of the duct. Taken together, these results suggest that testosterone upregulates epithelial responsiveness to acute modulations of anion secretion (likely bicarbonate secretion), which ultimately modifies the environment to which sperm are exposed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。