Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells

Smarcc1/Baf155 将自我更新基因抑制与小鼠胚胎干细胞染色质结构的变化结合起来

阅读:6
作者:Christoph Schaniel, Yen-Sin Ang, Kajan Ratnakumar, Catherine Cormier, Taneisha James, Emily Bernstein, Ihor R Lemischka, Patrick J Paddison

Abstract

Little is known about the molecular mechanism(s) governing differentiation decisions in embryonic stem cells (ESCs). To identify factors critical for ESC lineage formation, we carried out a functional genetic screen for factors affecting Nanog promoter activity during mESC differentiation. We report that members of the PBAF chromatin remodeling complex, including Smarca4/Brg1, Smarcb1/Baf47, Smarcc1/Baf155, and Smarce1/Baf57, are required for the repression of Nanog and other self-renewal gene expression upon mouse ESC (mESC) differentiation. Knockdown of Smarcc1 or Smarce1 suppressed loss of Nanog expression in multiple forms of differentiation. This effect occurred in the absence of self-renewal factors normally required for Nanog expression (e.g., Oct4), possibly indicating that changes in chromatin structure, rather than loss of self-renewal gene transcription per se, trigger differentiation. Consistent with this notion, mechanistic studies demonstrated that expression of Smarcc1 is necessary for heterochromatin formation and chromatin compaction during differentiation. Collectively, our data reveal that Smarcc1 plays important roles in facilitating mESCs differentiation by coupling gene repression with global and local changes in chromatin structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。