Aptamer-Gold(III) Complex Nanoparticles: A New Way to Detect Cu, Zn SOD Glycoprotein

适体-金(III)复合纳米粒子:检测Cu、Zn SOD糖蛋白的新方法

阅读:5
作者:Rawdha Dekhili, Khaoula Cherni, Hui Liu, Xiaowu Li, Nadia Djaker, Jolanda Spadavecchia

Abstract

Aptamers are small biomolecules composed of 20-100 nucleotides that recognize target molecules in three-dimensional structures. These natural targeting molecules have attracted interest in the biomedical field as biomarkers for cancer diagnostics. In this study, we investigated the interaction of a characteristic aptamer with its target protein, Cu, Zn superoxide dismutase (SOD 4), on a gold nanoparticle (AuNP) surface under experimental conditions. For this purpose, we applied two protocols to coat SOD 4 aptamer (APT) on the nanoparticle surface: carbodiimide chemistry (EDC/NHS) (Method ON) and a complexation methodology (Method IN). The nano-aptamer's interactions with SOD 4 were detected by UV-vis absorption and Raman spectroscopy in a range of protein concentrations (from 1 μM to 50 nM). We believe that the interaction is heavily dependent on the nature of the biomarker (SOD 4) and also on the steric arrangement of the aptamer on the gold nanoparticle surface. The lowest detectable concentration (limit of detection, LOD) was about 2 nM for APT IN PEG-AuNPs and 8 nM for APT ON PEG-AuNPs. For the first time, we demonstrated a very sensitive detection of SOD 4 in the nanomolar concentration range with new ways of biosensor synthesis (APT IN and ON), providing a very strong tool to understand the effect of aptamer conformation to detect SOD 4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。