Patterns of differential gene expression in a cellular model of human islet development, and relationship to type 2 diabetes predisposition

人类胰岛发育细胞模型中的差异基因表达模式及其与 2 型糖尿病倾向的关系

阅读:3
作者:Marta Perez-Alcantara, Christian Honoré, Agata Wesolowska-Andersen, Anna L Gloyn, Mark I McCarthy, Mattias Hansson, Nicola L Beer, Martijn van de Bunt

Conclusions/interpretation

The present study characterises RNA expression profiles during human islet differentiation, identifies potential transcriptional regulators of the differentiation process, and suggests that the inherited predisposition to type 2 diabetes is partly mediated through modulation of islet development. Data availability: Sequence data for this study has been deposited at the European Genome-phenome Archive (EGA), under accession number EGAS00001002721.

Methods

We performed whole-transcriptome RNA sequencing of human iPSC lines from three independent donors, at baseline and at seven subsequent stages during in vitro islet differentiation. Differentially expressed genes (q < 0.01, log2 fold change [FC] > 1) were assigned to the stages at which they were most markedly upregulated. We used these data to characterise upstream transcription factors directing different stages of development, and to explore the relationship between RNA expression profiles and genes mapping to type 2 diabetes GWAS signals.

Results

We identified 9409 differentially expressed genes across all stages, including many known markers of islet development. Integration of differential expression data with information on transcription factor motifs highlighted the potential contribution of REST to islet development. Over 70% of genes mapping within type 2 diabetes-associated credible intervals showed peak differential expression during islet development, and type 2 diabetes GWAS loci of largest effect (including TCF7L2; log2FC = 1.2; q = 8.5 × 10-10) were notably enriched in genes differentially expressed at the posterior foregut stage (q = 0.002), as calculated by gene set enrichment analyses. In a complementary analysis of enrichment, genes differentially expressed in the final, beta-like cell stage of in vitro differentiation were significantly enriched (hypergeometric test, permuted p value <0.05) for genes within the credible intervals of type 2 diabetes GWAS loci. Conclusions/interpretation: The present study characterises RNA expression profiles during human islet differentiation, identifies potential transcriptional regulators of the differentiation process, and suggests that the inherited predisposition to type 2 diabetes is partly mediated through modulation of islet development. Data availability: Sequence data for this study has been deposited at the European Genome-phenome Archive (EGA), under accession number EGAS00001002721.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。