NADPH oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell cycle progression

NADPH 氧化酶 4 通过调节 G2-M 细胞周期进程促进黑色素瘤细胞的转化表型

阅读:7
作者:Maki Yamaura, Junji Mitsushita, Shuichi Furuta, Yukiko Kiniwa, Atsuko Ashida, Yasuhumi Goto, Wei H Shang, Makoto Kubodera, Masayoshi Kato, Minoru Takata, Toshiaki Saida, Tohru Kamata

Abstract

Generation of reactive oxygen species (ROS) has been implicated in carcinogenic development of melanoma, but the underlying molecular mechanism has not been fully elucidated. We studied the expression and function of the superoxide-generating NADPH oxidase (Nox)4 in human melanoma cells. Nox4 was up-regulated in 13 of 20 melanoma cell lines tested. Silencing of Nox4 expression in melanoma MM-BP cells by small interfering RNAs decreased ROS production and thereby inhibited anchorage-independent cell growth and tumorigenecity in nude mice. Consistently, a general Nox inhibitor, diphenylene iodonium, and antioxidants vitamine E and pyrrolidine dithiocarbamate blocked cell proliferation of MM-BP cells. Flow cytometric analysis indicated that Nox4 small interfering RNAs and diphenylene iodonium induced G(2)-M cell cycle arrest, which was also observed with another melanoma cell line, 928mel. This was accompanied by induction of the Tyr-15 phosphorylated, inactive form of cyclin-dependent kinase 1 (a hallmark of G(2)-M checkpoint) and hyperphosphorylation of cdc25c leading to its increased binding to 14-3-3 proteins. Ectopic expression of catalase, a scavenger of ROS, also caused accumulation of cells in G(2)-M phase. Immunohistochemistry revealed that expression of Nox4 was detected in 31.0% of 13 melanoma patients samples, suggesting the association of Nox4 expression with some steps of melanoma development. The findings suggest that Nox4-generated ROS are required for transformation phenotype of melanoma cells and contribute to melanoma growth through regulation of G(2)-M cell cycle progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。