Epistasis meets pleiotropy in shaping biophysical protein subspaces associated with antimicrobial resistance

上位性与多效性相结合,形成与抗菌素耐药性相关的生物物理蛋白质子空间

阅读:9
作者:C Brandon Ogbunugafor, Rafael F Guerrero, Eugene I Shakhnovich, Matthew D Shoulders

Abstract

Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few framings of protein space consider how higher-level protein phenotypes can be described in terms of their biophysical dimensions, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these dimensions. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [(kcat, KM, Ki, and Tm (melting temperature)]. We then examine how three mutations (eight alleles in total) display pleiotropy in their interactions across these subspaces. We extend this approach to examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that the process of protein evolution and engineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。