Tuning the Encapsulation of Simple Fragrances with an Amphiphilic Graft Copolymer

利用两亲性接枝共聚物调节简单香料的包封

阅读:8
作者:Marianna Mamusa, Constantina Sofroniou, Claudio Resta, Sergio Murgia, Emiliano Fratini, Johan Smets, Piero Baglioni

Abstract

The encapsulation of poorly water-soluble compounds such as perfumes, flavors, and bioactive molecules is a key step in the formulation of a large variety of consumer products in the fields of household care and personal care. We study the encapsulation ability of an amphiphilic poly(ethylene glycol)-graft-poly(vinyl acetate) (PEG-g-PVAc) graft copolymer, extending the focus to the entire phase diagram of polymer/perfume/water systems with three common natural fragrances. The three perfume molecules (2-phenyl ethanol, L-carvone, and α-pinene) possess different water affinities, as expressed by their octanol/water partition coefficients. The investigation of the polymorphism of PEG-g-PVAc in these systems is carried out by means of dynamic light scattering, small-angle X-ray scattering, NMR spectroscopy, and confocal laser scanning microscopy. The results presented here demonstrate that the choice of fragrance can dramatically affect the supramolecular structures formed by the polymer in aqueous solution, with important consequences on formulations of industrial interest such as the demixing of complex perfume blends when one or more of the components have no chemical affinity for any of the polymer blocks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。