Suggested role for neutrophil extracellular trap formation in Ewing sarcoma immune microenvironment

中性粒细胞胞外陷阱形成在尤文氏肉瘤免疫微环境中的提示作用

阅读:9
作者:Rachel Shukrun, Szilvia Baron, Victoria Fidel, Anna Shusterman, Osnat Sher, Netanya Kollender, Dror Levin, Yair Peled, Yair Gortzak, Yoav Ben-Shahar, Revital Caspi, Sagi Gordon, Michal Manisterski, Ronit Elhasid

Abstract

Ewing sarcoma (EWS) is a highly aggressive cancer with a survival rate of 70%-80% for patients with localized disease and under 30% for those with metastatic disease. Tumor-infiltrating neutrophils (TIN) can generate extracellular net-like DNA structures known as neutrophil extracellular traps (NETs). However, little is known about the presence and prognostic significance of tumor-infiltrating NETs in EWS. Herein, we investigated 46 patients diagnosed with EWS and treated in the Tel Aviv Medical Center between 2010 and 2021. TINs and NETs were identified in diagnostic biopsies of EWS by immunofluorescence. In addition, NETs were investigated in neutrophils isolated from peripheral blood samples of EWS patients at diagnosis and following neoadjuvant chemotherapy. The relationships between the presence of TINs and NETs, pathological and clinical features, and outcomes were analyzed. Our results demonstrate that TIN and NETs at diagnosis were higher in EWS patients with metastatic disease compared with those with local disease. High NET formation at diagnosis predicted poor response to neoadjuvant chemotherapy, relapse, and death from disease (p < 0.05). NET formation in peripheral blood samples at diagnosis was significantly elevated among patients with EWS compared with pediatric controls and decreased significantly following neoadjuvant chemotherapy. In conclusion, NET formation seems to have a role in the EWS immune microenvironment. Their presence can refine risk stratification, predict chemotherapy resistance and survival, and serve as a therapeutic target in patients with EWS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。